Category Archives: Sentry Energy Production LLC

Resonant Technology Allows for Inline Density-Viscosity Measurement

800px-Erdöl_BohrturmFluid density and viscosity measurements are crucial to oil and gas operations, impacting activities across the exploration, production, and transportation sectors. A fluid’s viscosity determines the pressure required to transport it through a pipe with given dimensions, with more viscous liquids requiring higher pressure and resulting in lower flow rates. Additionally, density measurements are key to hydraulic fracturing operations, allowing companies to determine the correct amount of proppant to use. For these reasons, both density and viscosity play a large role in the pressure balance of a production system.

In many cases, oil and gas operators can reduce a fluid’s viscosity by heating or diluting it after measuring its current properties. However, the extreme conditions of oil and gas reservoirs cause difficulties in terms of collecting this critical data, as power shortages, space limitations, vibrations, and high pressure and temperature make the majority of laboratory-grade equipment impractical. Moreover, most lab equipment requires the collection of fluid samples, which offer little use to an operator in need of immediate measurements to aid the real-time optimization of drilling operations.

Fortunately, recent technological innovations have increased operators’ ability to measure fluid density and viscosity without traditional lab instruments. The Rheonics DV-2000 consists of a torsional tuning fork that displays varying resonant traits based on its interaction with surrounding fluid. This technology has formed the basis for a number of inline density-viscosity instruments, including the Rheonics DVM, which adds a titanium mounting and high-pressure inlet and outlet fittings to the original DV-2000 tuning fork. Using these technologies, oil and gas operators can begin to conduct critical analyses of pipeline fluids without the need for samples or cumbersome equipment.


The Role of the Landman in Oil and Gas Operations

States File Suit Against BLM Following Update to Fracking Regulations

Fracking Regulations pic In March 2015, the United States Department of the Interior Bureau of Land Management (BLM) released the final draft of its regulations on hydraulic fracturing on public and tribal property. Aimed at improving safety and preventing groundwater contamination, the new rule bolstered requirements for wastewater disposal, wellbore integrity, and transparency regarding chemicals. However, a number of states have taken issue with the regulatory update.

On March 26, Wyoming Governor Matt Mead filed suit against the BLM for regulatory review, and North Dakota, Colorado, and Utah joined the effort soon after. The states argue that, in initiating the new requirements, the BLM has exceeded its authority and that the federal agency’s updated regulations will conflict with rules already in place at the state level. State leaders such as Utah Governor Gary R. Herbert have posited that the new requirements would lead to an inconsistent and inefficient regulatory system that could add several years and millions of dollars in expenses to the permitting process.

Neil Kornze, director of the BLM, has stated that the updated regulations would not take the place of more rigid requirements already in place at the state level, noting that they are intended only to fill regulatory gaps. However, the states contend that the recent regulations conflict with existing laws at both the state and federal level, including the federal Safe Drinking Water Act.

Drones Take to the Skies for New Oil and Gas Applications

drones pic The energy sector has been investigating the use of unmanned aerial vehicles, popularly known as drones, for nearly a decade. British Petroleum started its first tests in 2006 and recently became one of the first in the industry to obtain a license from the Federal Aviation Administration (FAA) to operate drones. Largely because the FAA has mandated numerous limits on drone activity, including requirements for drone pilots to maintain sight of all flights, the pace of adoption remains slow, but industry specialists have already begun exploring the many ways that drones can be useful in and around oil rigs across the globe.

For most companies, drones have proven most useful as inspection tools, whether one wants to check flare stack integrity or use infrared cameras to find early signs of oil pipeline leaks. Rig operators have begun deploying drones to check for everything from ground movement to wildlife activity, and innovative mapping technologies are allowing for fine-grain models of oil-rich environments. Drones have even been used within the rigs themselves, thanks to special enclosures that protect the vehicle as it moves through oil tankers. While the FAA has only approved a portion of the applications for drone usage in the United States, industry specialists believe that drones represent an important component of the energy sector’s future.

API Urges US Legislators to Reform Oil Trade Restrictions

Oil Trade Restrictions pic In a recent press release, the American Petroleum Institute (API), the sole national trade association for all sectors of the oil and natural gas industry, urged US legislators to remove dated trade restrictions on US oil. Responding to America’s emergence as the world’s top oil producer, API president and CEO Jack Gerard called on lawmakers to take advantage of this prosperity. He credited widespread innovation with launching America to the forefront of the global energy sector but noted that trade limits dating back to the 1970s pose the risk of stunting this economic potential. Mr. Gerard cited numerous studies that indicate stringent oil trade restrictions have negative repercussions on consumer costs, limit job creation, and restrict America’s economic potential as a global energy leader.

Jack Gerard stressed that lessened oil trade restrictions have the potential to counter other nations’ use of energy as a geopolitical leveraging point. Urging the US Senate to prioritize oil trade reform in 2015, he noted that increasing global competition in the energy market has made the issue more salient than ever.

Technologies Aid in Oil Field Cleanup Efforts

At a recent event held by the Colorado Cleantech Industries Association, new tech-minded firms previewed some of the exciting new devices and techniques that will be used to clean, monitor, and assess the oil and natural gas fields of the future. In an industry in which companies have begun investigating ways to control methane gas emissions, reduce carbon footprints, and eliminate adverse environmental impacts, these technologies will be crucial. One Colorado company, FLIR Systems Inc., has already developed a thermal imaging leak detector to help companies manage methane control systems, but the next wave of technology promises to be even more revolutionary.

One company, Alert Plus, hopes to create gas monitors that communicate electronically and provide ways to automatically shut down the system in case of an emergency. Others are focused on bringing solar energy to the oil and gas industry. Solar Multiple, for example, has begun using solar power to create the thermal energy needed to evaporate the water found in drilling pits. Perhaps most exciting is the plan to bring drones to oil fields, an idea pioneered by Agribotix, a company founded originally to use drones in the agriculture industry. With drones bedecked in sensors and cameras, oil and gas experts can quickly and easily check oil pipeline safety and the conditions in faraway fields, allowing for greater control and safety at a lower cost.

A Primer on Saltwater Disposal Wells

Many oil and natural gas deposits are trapped in environments alongside water, and wells that are constructed to exploit these resources require techniques to handle the wastewater, also known as “saltwater,” “oilfield brine,” and “produced water,” that the extraction process brings up to the surface. Generally, the resources are mixed with the water and must be extracted. The remaining saltwater has to be carefully managed, and the Environmental Protection Agency places strict limits on its disposal. While companies are increasingly turning to injection wells, where the saltwater is recycled for use in extracting further natural gas or oil through hydraulic fracturing, the management of these fluids still requires care, and saltwater disposal wells have been designed specifically to contain them.

Generally, the goal of a saltwater disposal well is to ensure that the saltwater never interacts with the groundwater or the outside environment. In one state, Texas, the requirement for these kinds of wells states that three layers must be used: surface casing, production casing, and protection casing. The outermost layer, the surface casing, is steel and concrete that starts at the surface and descends all the way to the deepest groundwater layer. Next, the production casing takes the form of a pipe cemented to the wellbore, followed by the protection layer, with its injection tubing string. These components bring the water underground, where it remains safely stored in underground geologic formations.